A Bootstrap Algebraic Multilevel Method for Markov Chains
نویسندگان
چکیده
This work concerns the development of an algebraic multilevel method for computing state vectors of Markov chains. We present an efficient bootstrap algebraic multigrid method for this task. In our proposed approach, we employ a multilevel eigensolver, with interpolation built using ideas based on compatible relaxation, algebraic distances, and least squares fitting of test vectors. Our adaptive variational strategy for computation of the state vector of a given Markov chain is then a combination of this multilevel eigensolver and an associated additive multilevel preconditioned correction process. We show that the bootstrap algebraic multigrid eigensolver by itself can efficiently compute accurate approximations to the steady state vector. An additional benefit of the bootstrap approach is that it yields an accurate interpolation operator for many other eigenmodes. This in turn allows for the use of the resulting multigrid hierarchy as a preconditioner to accelerate the GMRES iteration for computing an additive correction equation for the approximation to the steady state vector. Unlike other existing multilevel methods for Markov chains, our method does not employ any special processing of the coarse-level systems to ensure that stochastic properties of the fine-level system are maintained there. The proposed approach is applied to a range of test problems, involving non-symmetric M-matrices arising from stochastic matrices, showing promising results.
منابع مشابه
Multilevel Adaptive Aggregation for Markov Chains, with Application to Web Ranking
A multilevel adaptive aggregation method for calculating the stationary probability vector of an irreducible stochastic matrix is described. The method is a special case of the adaptive smooth aggregation and adaptive algebraic multigrid methods for sparse linear systems, and is also closely related to certain extensively studied iterative aggregation/disaggregation methods for Markov chains. I...
متن کاملFast multilevel methods for Markov chains
This paper describes multilevel methods for the calculation of the stationary probability vector of large, sparse, irreducible Markov chains. In particular, several recently proposed significant improvements to the multilevel aggregation method of Horton and Leutenegger are described and compared. Furthermore, we propose a very simple improvement of that method using an over-correction mechanis...
متن کاملOn the Convergence of a Class of Multilevel Methods for Large Sparse Markov Chains
This paper investigates the theory behind the steady state analysis of large, sparse Markov chains (MCs) with a recently proposed class of multilevel (ML) methods using concepts from algebraic multigrid and iterative aggregationdisaggregation. The motivation is to better understand the convergence characteristics of the class of ML methods and to have a clearer formulation that will aid their i...
متن کاملAnalyzing Markov Chains Based on Kronecker Products
Kronecker products are used to define the underlying Markov chain (MC) in various modeling formalisms, including compositional Markovian models, hierarchical Markovian models, and stochastic process algebras. The motivation behind using a Kronecker structured representation rather than a flat one is to alleviate the storage requirements associated with the MC. With this approach, systems that a...
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 33 شماره
صفحات -
تاریخ انتشار 2011